Multivariate Time Series Classification by Combining Trend-Based and Value-Based Approximations
نویسندگان
چکیده
Multivariate time series data often have a very high dimensionality. Classifying such high dimensional data poses a challenge because a vast number of features can be extracted. Furthermore, the meaning of the normally intuitive term "similar to" needs to be precisely defined. Representing the time series data effectively is an essential task for decision-making activities such as prediction, clustering and classification. In this paper we propose a featurebased classification approach to classify real-world multivariate time series generated by drilling rig sensors in the oil and gas industry. Our approach encompasses two main phases: representation and classification. For the representation phase, we propose a novel representation of time series which combines trend-based and value-based approximations (we abbreviate it as TVA). It produces a compact representation of the time series which consists of symbolic strings that represent the trends and the values of each variable in the series. The TVA representation improves both the accuracy and the running time of the classification process by extracting a set of informative features suitable for common classifiers. For the classification phase, we propose a memory-based classifier which takes into account the antecedent results of the classification process. The inputs of the proposed classifier are the TVA features computed from the current segment, as well as the predicted class of the previous segment. Our experimental results on real-world multivariate time series show that our approach enables highly accurate and fast classification of multivariate time series.
منابع مشابه
Identification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملRainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملApplication of multivariate techniques in-line with spatial regionalization of AOD over Iran
Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...
متن کامل